百度排名优化:Python无监督抽词

SEO知识 战车网 来源:夜息博客 47浏览 0评论

如何快速正确分词,对于SEO来说,是提取tags聚合,信息关联的好帮手。

目前很多分词工具都是基于一元的分词法,需要词库来辅助。

通过对Google黑板报第一章的学习,如何利用统计模型进行分词。

本方法考虑了3个维度:

凝聚程度:两个字连续出现的概率并不是各自独立的程度。例如“上”出现的概率是1×10^-5,”床”出现的概率是1×10^-10,如果这两个字的凝聚程度低,则”上床”出现的概率应该和1×10^-15接近,但是事实上”上床”出现的概率在1×10^-11次方,远高于各自独立概率之积。所以我们可以认为“上床”是一个词。

左邻字聚合熵:分出的词左边一个字的信息量,比如”巴掌”,基本只能用于”打巴掌”,“一巴掌”,“拍巴掌”,反之”过去”这个词,前面可以用“走过去”,“跑过去”,“爬过去”,“打过去”,“混过去”,“睡过去”,“死过去”,“飞过去”等等,信息熵就非常高。

右邻字聚合熵:分出的词右边一个词的信息量,同上。

下面是一个利用Python实现的demo(转自:http://www.webinfoextract.com/forum.php?mod=viewthread&tid=20)

#!/bin/sh
 
python ./splitstr.py > substr.freq
 
python ./cntfreq.py > word.freq
 
python ./findwords.py > result
 
sort -t”    ” -r -n -k 2 result > result.sort

splitstr.py,切分出字数在10以内的子字符串,计算词频,左邻字集合熵,右邻字集合熵,并输出出现10次以上的子字符串:

import math
 
def compute_entropy(word_list):
        wdict={}
        tot_cnt=0
        for w in word_list:
                if w not in wdict:
                        wdict[w] = 0
                wdict[w] += 1
                tot_cnt+=1
        ent=0.0
        for k,v in wdict.items():
                p=1.0*v/tot_cnt
                ent -= p * math.log(p)
        return ent
 
def count_substr_freq():
        fp = open(“./video.corpus”)
        str_freq={}
        str_left_word={}
        str_right_word={}
        tot_cnt=0
        for line in fp:
                line=line.strip(‘\n’)
                st = line.decode(‘utf-8’)
                l=len(st)
                for i in range(l):
                        for j in range(i+1,l):
                                if j – i  0:
                                                left_word=st[i-1]
                                        else:
                                                left_word=’^’
                                        if j < l-1:                                                 right_word=st[j+1]                                         else:                                                 right_word=’%’                                         str_left_word[w].append(left_word)                                         str_right_word[w].append(right_word)                                         tot_cnt+=1         for k,v in str_freq.items():                 if v >= 10:
                        left_ent=compute_entropy(str_left_word[k])
                        right_ent=compute_entropy(str_right_word[k])
                        print “%s\t%f\t%f\t%f”%(k,v*1.0/tot_cnt,left_ent,right_ent)
 
if __name__ == “__main__”:
        count_substr_freq()

cntfreq.sh,统计每个字的字频:

def count_freq():
    word_freq={}
    fp = open(“./substr.freq”)
    tot_cnt=0.0
    for line in fp:
        line=line.split(‘\t’)
        if len(line) < 2:
            continue
        st = line[0].decode(‘utf-8’)
        freq = float(line[1])
        for w in st:
            if w not in word_freq:
                word_freq[w]=0.0
            word_freq[w]+=freq
            tot_cnt+=freq
    while True:
        try:
            x,y = word_freq.popitem()
            if x:
                freq=y*1.0/tot_cnt
                print “%s\t%f”%(x.encode(‘utf-8’),freq)
            else:
                break
        except:
            break
 
if __name__ == “__main__”:
    count_freq()

findwords.py,输出凝合程度高,且左右邻字集合熵都较高的字符串:

def load_dict(filename):
        dict={}
        fp=open(filename)
        for line in fp:
                line=line.strip(‘\n’)
                item=line.split(‘\t’)
                if len(item) == 2:
                        dict[item[0]] = float(item[1])
        return dict
 
def compute_prob(str,dict):
        p=1.0
        for w in str:
                w = w.encode(‘utf-8’)
                if w in dict:
                        p *= dict[w]
        return p
 
def is_ascii(s):
        return all(ord(c) < 128 for c in s)
 
def find_compact_substr(dict):
        fp = open(“./substr.freq”)
        str_freq={}
        for line in fp:
                line = line.decode(‘utf-8’)
                items = line.split(‘\t’)
                if len(items) < 4:
                        continue
                substr = items[0]
                freq = float(items[1])
                left_ent = float(items[2])
                right_ent = float(items[3])
                p=compute_prob(substr,dict)
                freq_ratio=freq/p
                if freq_ratio > 5.0 and left_ent > 2.5 and right_ent > 2.5 and len(substr) >= 2 and not is_ascii(substr):
                        print “%s\t%f”%(substr.encode(‘utf-8’),freq)
 
if __name__ == “__main__”:
        dict=load_dict(‘./word.freq’)
        find_compact_substr(dict)

对3万条视频的标题,抽出的频率最高的50个词如下:

50视频 0.000237

轴承 0.000184

北京 0.000150

中国 0.000134

高清 0.000109

搞笑 0.000101

新闻 0.000100

上海 0.000100

美女 0.000092

演唱 0.000085

音乐 0.000082

—— 0.000082

第二 0.000080

少女 0.000078

最新 0.000074

广场 0.000070

世界 0.000070

现场 0.000066

娱乐 0.000066

大学 0.000064

公司 0.000064

舞蹈 0.000063

电视 0.000063

教学 0.000060

我们 0.000060

国语 0.000059

经典 0.000056

字幕 0.000055

宣传 0.000053

钢管 0.000051

游戏 0.000050

电影 0.000049

演唱会 0.000046

日本 0.000045

小学 0.000045

快乐 0.000044

超级 0.000043

第三 0.000042

宝宝 0.000042

学生 0.000042

广告 0.000041

培训 0.000041

视频 0.000040

美国 0.000040

爱情 0.000039

老师 0.000038

动画 0.000038

教程 0.000037

广州 0.000037

学院 0.000035

文章来源:http://www.imyexi.com/?p=682

转载请注明:战车网 » 百度排名优化:Python无监督抽词

猜你喜欢

杭州百度优化:分享搜索引擎预处理和中文分词的秘密

前面我们讲个搜索引擎如何搜集网页,今天说下第二个过程网页预处理,其中中文分词就显得尤其重要,下面就详细讲解一下搜索引擎是怎么进行网页预处理的: 网页预处理的第一步就是为原始网页建立索引,有了索引就可以为搜索引擎提供网页快照功能;接下来针对索引网页库进...

百度seo优化:全自动监控网站关键词排名(Python实现)

从这篇文章开始不打算再花费大量精力去写程序本身的知识,毕竟是各类书籍上有的内容。其余主要需要学习的是内置函数的使用,和一些模块的使用方式,尤其是pycurl,re,threading这些需要慢慢熟悉起来。 若在学习中有不解的地方,在文章评论中可以提出...

绍兴seo:基于中文分词的seo软文技巧一:断句

今天介绍基于seo的软文如何断句。 一、如何基于seo 明确的说,从中文分词的角度考虑,seo软文本身就分两个词seo、软文,那么如果您想在seo平台或者站长平台写一篇很好,很软的宣传文章,您不仅需要掌握seo的最基础的知识,更需要您对自己的产品非常...

avatar
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址